Lectures on Stability and Constant Scalar Curvature
نویسندگان
چکیده
منابع مشابه
K-stability of constant scalar curvature Kähler manifolds
We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.
متن کاملHypersurfaces with Constant Scalar Curvature
Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of com...
متن کاملLectures on Mean Curvature Flow and Stability (MAT 1063 HS)
The mean curvature flow (MCF) arises material science and condensed matter physics and has been recently successfully applied to topological classification of surfaces and submanifolds. It is closely related to the Ricci and inverse mean curvature flow. The most interesting aspect of the mean curvature flow is formation of singularities, which is the main theme of these lectures. In dealing wit...
متن کاملConstant scalar curvature metrics with isolated singularities
We extend the results and methods of [6] to prove the existence of constant positive scalar curvature metrics g which are complete and conformal to the standard metric on S \ Λ, where Λ is a disjoint union of submanifolds of dimensions between 0 and (N − 2)/2. The existence of solutions with isolated singularities occupies the majority of the paper; their existence was previously established by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Developments in Mathematics
سال: 2007
ISSN: 1089-6384,2164-4829
DOI: 10.4310/cdm.2007.v2007.n1.a4